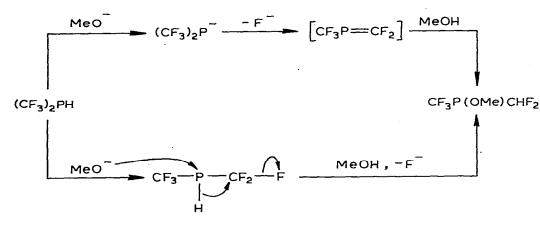
Journal of Organometallic Chemistry, 181 (1979) C1–C3 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

¹⁹F AND ³¹P NMR CHARACTERISATION OF THE PHOSPHAALKENE, CF₃ P=CF₂, INTERMEDIATE IN THE ALKALINE HYDROLYSIS OF BIS(TRIFLUOROMETHYL)PHOSPHINE

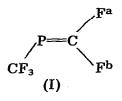
HOSSEIN ESHTIAGH-HOSSEINI, HAROLD W. KROTO, JOHN F. NIXON* and OSAMU OHASHI


School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received August 7th, 1979)

Summary

The previously postulated phosphaalkene intermediate $CF_3 P=CF_2$ in the alkaline hydrolyses of $(CF_3)_2$ PH has been trapped and characterised by its ¹⁹F and ³¹P NMR spectra.

Reactions between primary or secondary polyfluoroalkylphosphines with nucleophiles such as alkoxides and amines [1-5] have been discussed on the basis of either formation of a short lived phosphaalkene intermediate or alternatively involving a nucleophilically initiated hydride ion shift from phosphorus to an α -carbon atom.


Thus in the case of attack of methoxide on $(CF_3)_2$ PH the product $CF_3 P(OMe)(CHF_2)$ could arise from the routes shown below:

Previously we have reported the detection by microwave spectroscopy of phosphaalkenes of the type $CF_2 = PH$, $CH_2 = PH$ and $CH_2 = PCl$ from high tem-

perature pyrolysis of suitable phosphine precursors [6,7] and subsequently we have characterised $CF_2 = PH$ and FC = P as intermediates in the room temperature base hydrolysis of $CF_3 PH_2$ [8]. Bickelhaupt et al. [9] have recently isolated the stable phosphaalkene (Mes)P=CPh₂ (Mes = mesityl) illustrating the importance of steric hindrance to polymerisation in determining the stability of these compounds.

We now report ¹⁹F and ³¹P NMR spectroscopic characterisation of CF₃ P=CF₂ which confirms the phosphaalkene mechanism for the alkaline hydrolysis of (CF₃)₂ PH. The ³¹P{¹H} NMR spectrum at -78° C of the products formed when gaseous (CF₃)₂ PH is passed several times through a U-trap containing KOH pellets in a high vacuum line is shown in Fig. 1. The high field resonance is of unreacted (CF₃)₂ PH (²J(PF) 65.9 Hz) [10].

The low field resonance is that expected for the phosphaalkene intermediate $CF_3 P=CF_2$ (I) consisting of an overlapping doublet of doublets of quartets from spin-coupling to F^a , F^b and the CF_3 group. Chemical shift and coupling constant data are listed in Table 1.

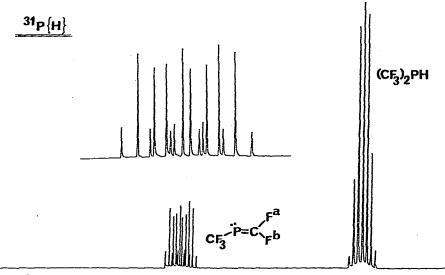


Fig. 1. ³¹P 1 H 1 NMR spectrum at -78°C of the products of the reaction between (CF₃)₂ PH and KOH.

TABLE 1

SOME NMR DATA FOR PHOSPHAALK

^aRel. P(OMe)₃. ^bRel. CCl₃ F. ^cIn Hz.

	δ(P) ^a	$\varphi(\mathbf{F}^{\mathbf{a}})^{\mathbf{b}}$	$\varphi(\mathbf{F}^{\mathbf{b}})^{\boldsymbol{b}}$	J(PF ^a) ^c	J(PF ^b) ^c	$J(\mathbf{F}^{a}\mathbf{F}^{b})^{c}$	Ref.
$\frac{CF_2 = PH}{CF_2 = PCF_3}$	201.4 121.4	4.2 3.9	24.6 38.7	213.6 191.4		25.4 29.3	[8] This work

C2

The ¹⁹F NMR spectrum of the products confirms the assignments, and in addition reveals the presence of both CF_3 H (doublet ²J(FH) 79.4 Hz) and CF_2 H₂ (triplet ²J(FH) 50.1 Hz). These products are expected to result from addition of water across the double bond of the phosphaalkene followed by normal alkali cleavage of the fluoro-carbon substituents of the resulting phosphine viz.

 $CF_3 P=CF_2 \xrightarrow{H_2 O} CF_3 P(OH)CF_2 H \xrightarrow{OH} CF_3 H CF_2 H_2$

Acknowledgement

We thank SRC for post-doctoral support for this work.

References

- 1 H. Goldwhite, R.N. Haszeldine and D.G. Rowsell, J. Chem. Soc., (1965) 6875.
- 2 G.M. Burch, H. Goldwhite and R.N. Haszeldine, J. Chem. Soc., (1964) 572.
- 3 M. Green, R.N. Haszeldine, B.R. Iles and D.G. Rowsell, J. Chem. Soc., (1965) 6879.
- 4 R.N. Haszeldine, D.R. Taylor and E.W. White, J. Fluorine Chem., 10 (1977) 27.
- 5 R.N. Haszeldine, D.R. Taylor and E.W. White, J. Fluorine Chem., 11 (1978) 441.
- 6 M.J. Hopkinson, H.W. Kroto, J.F. Nixon and N.P.C. Simmons, J. Chem. Soc. Chem. Commun., (1976) 513.
- 7 H.E. Hosseini, H.W. Kroto, J.F. Nixon and N.P.C. Simmons, in preparation.
- 8 H.E. Hosseini, H.W. Kroto, J.F. Nixon, S. Brownstein, J.R. Morton and K.F. Preston, J. Chem. Soc. Chem. Commun., (1979) 653.
- 9 T.C. Klebach, R. Lourens and F. Bickelhaupt, J. Amer. Chem. Soc., 100 (1978) 4886.
- 10 A.B. Burg, Inorg. Nucl. Chem. Letters, 13 (1977) 199.